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A High-Order Cut-Cell Method for Numerical Simulation of
Hypersonic-Boundary Transition with Surface Roughness

Le Duan* , Xiaowen Wang † and Xiaolin Zhong.‡

University of California, Los Angeles, California 90095

Hypersonic boundary-layer transition can be effected significantly by surface roughness.
In this paper, the receptivity process induced by interaction of Mach 5.92 flow over flat
plate under the combination effect of two-dimensional surface roughness and blow-suction
is investigated. A new high-order cut-cell method is developed to generate cut cells in the
irregular domain. The governing Navier-Stokes equations are solved by using third-order
non-uniform upwind finite difference method in the irregular cells. A high-order shock-
fitting method is also employed to treat the upper bow-shock to maintain the overall
accuracy. Both steady state solutions and unsteady solutions have been obtained by using
the new method. For simulating steady flow with roughness, there is significant change
inside the boundary layer, but not vary significantly away from the wall. For unsteady flow,
the preliminary results for flow instability induced by both blow-suction slot and roughness
have also been obtained.

I. Introduction

The mechanism of roughness induced laminar-turbulence transition of boundary layer is important to design
hypersonic vehicles. Transition can have a first order influence on their body lift and drag, stability and control and
heat transfer property. For example, swept wings are used for most commercial and military aircraft. It has been
know that the aerodynamics parameter may vary substantially after transition. Thus to understand the fundamental
instability mechanisms in swept-wing flows is crucial considering its board application in aerospace design [1].
Another application of studying roughness induced transition is for the design of thermal heat protection system of
hypersonic vehicles. For a reentry vehicle entering earth’s atmosphere, it initially experiences a heating environment
associated with a laminar boundary layer. Eventually with the attitude decreasing, the vehicle surface become
rougher and the boundary layer become turbulent and the heating rate at the surface can be increased by a factor of
four or more [2]. Thus the ability to understand and predict the roughness induced transition plays an essential role
in thermal protection system (TPS) design process. However, roughness induced laminar-turbulence transition in
hypersonic boundary layers is still poorly understood due to the limitation in experimental facilities and numerical
methods [4].

Laminar-Turbulence transition process generally consists of three stages. They are receptivity, linear and
nonlinear growth of instability waves and breakdown to turbulence. There has been recent development of using
transition growth theory as an explanation for by-pass transition due to surface roughness [11]. Within the entire
laminar-turbulence transition process, the receptivity process involves the generation and excitation of instability
wave (T-S waves) inside the boundary layer under various external environmental perturbations [3]. The receptivity
and transition process induced by surface roughness is one of the frequently studied fields in the last decades. The
instability mechanisms associated two-dimensional roughness (Spanwise invariant three-dimensional roughness)
have been studied since the model behind it is simple in analyzing and simulating both from the theoretical and
experimental point of view. There is a conclusion that both of the frequency of external free stream disturbance and
surface roughness can affect the amplitude of T-S instable waves [4]. A linear relationship between amplitude of T-
S wave and height of roughness can be observed for small roughness in low speed flow [14].
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There have been extensive theoretical studies on roughness induced receptivity and transition, mainly for
incompressible flow. Goldstein [5] developed an asymptotic analysis approach for localized receptivity, utilizing the
triple-deck structure. The viscous flow below the deck adjacent to the wall is governed by the Linearized Unsteady
Boundary Layer Equation, revealing that the energy transition from the wave-length of the freestream disturbance to
that of the instability waves is mainly caused by the short-scale nonparallel flow effects. Kerschen et al. [6]
examined receptivity induced by two-dimensional suction trips and interaction of vertical freestream disturbances
with wall inhomogenisities [8], Choudhari et al. [7] extended their work to three-dimensional inhomogeneous wall.
Crouch [9] further developed localized receptivity analyses by considering parallel shear flow with only small
disturbances. Duck et al. [10] by using a triple-deck formulation analyzed the receptivity of interaction between a
vortical disturbance and a roughness. Based on the same Orr-Sommerfield equations, Choudhari et al. [11] studied
the same kind of interactions studied by Duek et al. [10]. Their calculation showed that the lower-frequency
components of the gust could be a more effective T-S wave generator.

Many experiments have been conduced to verify the theoretical results of receptivity of incompressible boundary
layers to two-dimensional roughness. Welzien et al. [12, 13] did experiments measure on the acoustic receptivity to
porous suction slots. Saric et al. [14] studied the receptivity of two-dimensional roughness to acoustic waves with
minimal leading-edge effects. Two-dimensional roughness trips with 40-um thick and 25-mm wide were used. The
width of strip is identical to the half wavelength of the T-S wave ( 50

TS
mmλ = ) and 50F = . They correlated the

effect of thickness of the roughness element with a roughness Reynolds number kR . In Saric’s paper, kR is based

on the local velocity and the roughness height k , where ( ) /kR U k k v= .With the variation of roughness height k it

was found that the T-S amplitude increase linearly with the roughness in the range of 40 120 mµ− . This linear

behavior was also predicted by Crouch [15] and Nayfed et al. [16]. The departure from linear behavior occurs in the
range of 180 255k mµ= − , which was validated by Bodonyi et al. [17] by a nonlinear triple-deck analysis. Kerschen

et al. [6] analyzed localized receptivity due to porous suction trips and showed that these two kinds of receptivity
mechanism are fundamentally the same. Kosorygin et al. [18] reported experiments results about where the position
of roughness was changed with respect to the leading edge. His research work showed that there exists a particular x
position where the destructive interface is a maximum and the T-S wave amplitude is below the leading-edge(no
roughness) value. Kosorygin [19] then extended this work by taking the adverse and favorable pressure gradient into
account.

There have been limited reported numerical simulation studies of boundary-layer receptivity to surface roughness.
For problems having complex computational geometry, as might occur in the transition problems induced by
isolated/distributed roughness, the use of body fitted curvilinear gird could prove to be very difficult due to natural
complexities in grid generation. Consequently, one approach for overcoming this difficulty is to use a Cartesian cut
cell method, which is easy in generating and implementing numerical schemes. Cut cell methods can take full
advantage of fast computer architectures like vector or parallel computers and could serve as a very flexible method
for simulating flow around complex geometries. It was first used for solving the equations of transonic potential
flow by Purvis and Burkhalter [28]. Then it was further developed to calculate steady compressible flows by Clarke
et al. [29]. Among those applications, a problem referring to restriction on time step would arise when we are trying
to implement high-order numerical scheme in relatively small-size irregular cell. This constriction which is termed
as “small cell problem”, would significantly delay the temporal advancement, as well as increasing the
computational cost. Thus the major issues is on how to design a method that could not only relax the time step, but
also maintain the overall accuracy, stability, and conservation of numerical results inside the irregular cells.

Many innovative methods were developed to resolve the small cell problem. Berger and Leveque [30] used
rotating box metho. Colella et al. [31-33] used flux-redistribution procedures, and Quirk [34], Shyy [35] used cell
merging method to get numerical stability. However, all the cut cell methods with different treatments to the
boundary were of first or second order, which were not sufficient in numerically simulating laminar-turbulent
boundary transitions. Shyy et al. [37] extended his previous second-order method to fourth order with merging cell
approach. But the reconstruction flux procedure is relatively expensive thus slowing down the computational
efficiency. Colella et al. [38] developed a fourth-order accurate finite volume method combined with a local mesh
refinement for discretizing Poisson’s equation in a rectangular domain. However, this kind of method could be
tedious in implementing for irregular domain. Fedkiw et al. [39] also presented a fourth-order finite difference
method for solving the Laplace equation on an irregular domain by using the ghost fluid method. The key point of
his method is to extrapolate the existing flow variables into the artificial nodes outside the boundary where the same
high-order uniform finite difference scheme could be executed.
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In this paper, we present a high-order cut-cell method. A non-uniform finite difference technique is developed to
calculate the flux vector in the irregular grid cells. The new method is applied to Mach 5.92 flow over two-
dimensional flat plate. The bow shock generated from the leading edge of the flat plate will be treated as a boundary
condition and discretized based on Zhong’s [41] fifth-order finite difference flux split method and shock fitting
method. We first obtain the steady state solution with a surface roughness placed on the flat plate 0.186m
downstream with height to be half of boundary-layer thickness. For unsteady solution, the flat plate with a blow-
suction composed of 15 different frequencies mounted at 0.030m downstream from the leading edge is simulated.

II. Governing Equations

The governing equations for the numerical simulation of hypersonic boundary layer transition are the three-
dimensional Navier–Stokes equations. We assume that we are dealing with Newtonian fluids with perfect gas
assumption and adiabatic wall condition. The governing equations can be written in the following conservation-law
form in the Cartesian coordinates.
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 In this paper, only perfect-gas hypersonic flow is considered, i.e.,

p RTρ= (5)
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where R is the gas constant. The specific heats Cv are assumed to be constants with a given ratio of specific heats

γ . The viscosity coefficient µ can be calculated by Sutherland’s law in the form:
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and ¸ λ is assumed to be 2 / 3µ− . The heat conductivity coefficient γ can be computed through a constant Prantl

number Pr .

III. Numerical Methods

A. Discretization in Space – High-Order Finite Difference and Shock-Fitting Method

To satisfy the accuracy requirement for capturing small disturbances inside the boundary layer for receptivity and
transition simulation, a three-dimensional fifth-order shock-fitting method developed by Zhong is used to compute
the flow field bounded by the bow shock and wall surface. In the discretization of the Navier-Stokes equations,

spatial derivatives in the streamwise ( s ) and wall-normal ( ny ) directions are modeled by a fifth-order finite

difference scheme. The flow variables behind the shock are determined by the Rankine-Hugoniot relations across
the shock and a characteristic compatibility equation from behind the shock. The details of the shock fitting
formulas and numerical methods can be found in [41].

The proposed numerical scheme will base on this finite difference method, thus the governing equation (1) is
transformed into the computational domain ( , , , )ξ η ζ τ as

' ' '1 ' ' '
0v v vE F GU E F G
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As shown in Fig.1, standard finite difference scheme will base on Equation (10)-(16).

B. Treatment of Fluid-Solid Boundary – Cut Cell Method

In traditional Cartesian cut cell method [30-35], rectangular Cartesian cells are generated to fulfill the irregular
computational domain directly. In order to improve the computational efficiency, in our numerical process the
physical domain without roughness is transformed and projected onto a regular domain at first as shown in Fig. 1.
This transformation procedure can eliminate the unnecessary irregular cells formed through intersections of girds
lines and curvilinear solid wall boundary.

After the coordinate transformation, the two-dimensional computational domain is cut uniformly by the vertical
and horizontal girds line and divided into both small regular and irregular Cartesian cells. Four different kinds of
girds located in the vertex of those Cartesian cells are defined and different numerical algorithm is implemented.
The four different kinds of girds are regular point, irregular point, boundary point, and dropped point as shown in
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Fig. 2. The intersections of roughness interface and girds lines are defined as boundary points. The other points
come from intersections of girds lines themselves are termed as regular points, irregular points and dropped points
respectively. The criteria for distinguishing those are depending on their minimum distances to the solid wall. If the
grids points adjacent to a boundary point with a distance smaller than a pre-specified critical ratio (e.g. h∆ /10) in x
or y direction, they are defined as dropped points in this x or y direction and was took off from the gird stencil in
later stage. For those points whose finite difference stencil may include boundary points, they are defined as
irregular points. Then the left points are defined as regular points since they are relatively far away from boundary
points, where a standard uniform finite difference method can be used.

The flux terms in regular points are computed by the traditional high-order upwind finite difference scheme [41],
which might take up to a seven point stencil. To calculate the flux in irregular points, a non-uniform finite difference
method is used, whose stencil is consisted of regular, irregular and boundary points. Noting the points marked with
red dot in Fig. 2 are dropped, they should not be included into this non-uniform stencil. As a result, the small
segment in a non-uniform difference stencil between the dropped point and irregular point are enforced to merge
into a large segment which connects the nearby boundary point and irregular point directly. This kind of grids
definition and segment merging approach ensure that distance between two adjacent grids in the seven points stencil
to be large enough for maintaining the overall stability within acceptable time step range. This cut cell method is
conservative, easy to implement, high efficiency, and suitable for computing hypersonic boundary receptivity and
transition problems with strong shocks.

The numerical scheme in irregular points involve in non-uniformly finite difference stencil. Typically, to obtain
thN order global accuracy, a 1N − grids stencil should be adapted as shown in Fig. 4 (Labeled from 2 to / 2 1N + ).

To maintain the consistence to the original uniform finite difference method, a non-uniform flux-split method is
developed to separate the flux variable at irregular points into positive and negative part. Both of the upwind and
backwind non-uniform difference schemes will be applied into the two parts separately. The non-uniform finite
difference formulation for different irregular points is derived though taking first-order derivatives to Lagrange
interpolation polynomial as shown in (17) for corresponding irregular points. Similarly, the second-order numerical
derivative is obtained by taking another first-order derivative toward formulation in (17).
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In equation (17), ka represent coefficients derived through the 1thN− order Lagrange interpolation polynomials

after taking one-order derivatives with respect to x. Since all the coefficients are depending on the metrics of
moving girds caused by shock-fitting method, at each time step the value of those points should be recalculated. A
similar scheme parameter α in terms as forward/backward coefficient is also defined as it is in uniform scheme for
the the non-uniform finite difference scheme.

High-order finite difference method requires numerical boundary conditions of comparable order to maintain

global accuracy. To maintain thN order accuracy, at least 1thN− order boundary closure is needed. Specifically, to
maintain the stability and global computational errors in fifth-order, it is desirable to have at least fourth-order
accuracy in boundary. And in terms of solving viscous layer effect, more girds near the boundary in the domain
should be clustered in the finite difference stencil. The unsteady shock interface in the upper bound is treated by
shock-fitting method. The boundary conditions can be determined by the Rankine-Hugonion condition. Since the
freestream condition is hypersonic, the characteristic lines in flow field are all pointing towards same directions
without any waves propagating back into interior. Thus a high-order extrapolation up to fourth-order is used for
obtaining outlet boundary conditions for all flow variables without introducing any numerical instability.

Non-slip adiabatic wall boundary condition is applied to the solid interface with surface roughness. Since there is
a singularity while using shock-fitting method in the computational region containing leading edge, our numerical
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simulation with non-uniform scheme will be carried on in the downstream far from the leading edge. It turns out that
the boundary layer in our computational zone is fully developed, and two additional boundary conditions are needed
as follows,

0, 0
P T

n n

∂ ∂
= =

∂ ∂
 (18)

where n is the coordinate along the wall-normal direction. In our later receptivity simulation, we set the boundary
condition for temperature perturbation to be zero, since the frequency of disturbance is so high that the solid wall
can not respond in such high frequency.

Equations (10) are discretized by 1thN− order one-sided finite difference method along the local normal vector
near surface. The stencil is entirely located in fluid part with first point being the boundary point.

A close attention should be paid to boundary points where the finite difference stencil is not uniform. Let l
denotes the distance between two adjacent points, e.g. 1l connects point 1 and 2, 2l connects point 2 and 3 as shown

in Fig. 3. After applying one-sided high-order difference scheme toward boundary points, linear equations can be
derived as (19) and (20). This type of high-order extrapolation is very sensitive to the critical ratio and serves as a
crucial factor for overall numerical simulations stabilities. Further extensive numerical tests on this factor are
necessary to investigate their influences.
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Finite difference method for regular/irregular point may involve in dropped points rather than the pre-specified
dropped direction. To achieve global conservation of the governing partial difference equation, we should recover

the flux in dropped points at each time step. The key point of this recover process is to use a thN order non-
uniform linear interpolation to obtain the numerical value from flow variables along the local normal vector near
the dropped points.

IV. Results and Discussions

A. Steady Base Flow without Roughness

A test case for flow over a two-dimensional flat plate with Mach number 5.92 without roughness is conducted.
The numerical results are used to compare with the case without roughness element applied in the flow field.

The steady mean flow solutions are calculated by using a fifth-order shock fitting method. But in the leading edge
of the flat plate, there is a singularity when high-order shock fitting method is implemented. Thus a second-order
TVD shock-capturing method is initialized to calculate the flow field in the tip of flat plate. The computational
domain for TVD starts from a very short distance downstream of the leading edge which is divided to 100 200×
grids. The ambient flow conditions are:

• 5.92, 350.0 , 3903.5M T K P Pa∞ ∞ ∞= = =
 (21)

• * 60.72, * / 1.32 10 /eP R u mr ρ µ∞ ∞ ∞ ∞= = = ×  

• 0.0006 0.0030x m− < <
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The flat plate is assumed to be adiabatic. The spatial discretization of TVD scheme is applied toward equation
(10) and leads to semi-discrete system of ordinary differential equations, which are solved by using second-order
Runge-Kutta method.

To validate the numerical simulation results, we use parameters after the shock to non-dimensionalize the flow
field and compare the numerical and analytical solutions at 0.001x m= in Fig. 5. A good agreement between these
two results is achieved. The minor difference outside the boundary layer is caused by the shock generated by the
leading edge. The two-dimensional flow field then could serve as inlet condition for the fifth-order shock fitting
code.

The computational domain for the fifth-order shock-fitting methods starts at 0.003x m= and ends at
1.68784x m= . In actual simulations, the computational domain is divided into 30 zones, with total of 5936 grid

points in the stream wise direction, and 121 points in the vertical direction. An exponential stretching function is
used for coordinate transformation in the vertical direction in order to cluster more girds inside the boundary layer.
As mentioned above, the second zone uses the results of the first zone of second-order TVD scheme as the inlet
condition. The later zone used the interpolation of former zone’s data as the inlet condition.

In zone 8, computational domain starts at 0.159x m= and ends at 0.195x m= . Pressure and velocity contours for
zone 8 have been plotted in Fig. 6. The numerical solution is bounded by oblique shock and laminar boundary layer
near the plate. Fig. 7 shows the horizontal velocity profile and temperature profiles in the vertical direction at the
location of 0.1676x m= . The current numerical solutions are compared with the self-similar boundary layer
solution. The velocity and temperature are normalized by corresponding freestream value, while y is

nondimensionalized by /x Uµ ρ . These figures show that the results of the current numerical simulation agree

very well with theoretical solution. Thus second-order TVD scheme is accurate enough to be the supporting inlet
condition of fifth-order shock-fitting method.

B. Steady Flow with Roughness

A pinhead like roughness shape is used on the surface of plate at downstream 0.186x m= . The shape of the
roughness is following Whiteheard’s experiments [43]. The surface roughness is modeled as a two-dimensional
bump, governed by the elliptic equation:

2 2 2( ) /cx x a by h− + =  (22)

The computation are performed under parameter configuration 4, 1a b= = and / 1 / 2h δ =
where δ corresponds to the boundary layer thickness at 0.186cx m= as shown in Fig. 8a. Cartesian meshes are

generated to discretize the entire computational domain as shown in Fig. 8b. A girds stretching function is also
employed to concentrate more girds in boundary layer to gain better resolution in viscous layer.

Fig. 9 shows the pressure and Mach number contours in zone 8 where the roughness located in. A bow shock
appears in front of bump and extends along the streamwise direction to outside the domain. Along the surface of
roughness, the pressure reach the minimum at the tail since the coming fluids is compressed by the roughness at the
beginning, and then is expanding along the downstream. Fig. 10 shows the pressure and Mach number contour from
zone 8 to zone 10. Instead of increasing, the shock strength keeps decreasing all the way to the downstream. The
initially disturbance is damped away in zone 9. The laminar-turbulence transition did not present in our numerical
simulation, due to the low order accuracy, finite Reynolds Number, approximated boundary conditions et al.

Fig. 11-13 show the horizontal velocity and density profiles along a wall-normal vector at
location 0.188x m= , 0.200x m= and 0.240x m= for flow without and with roughness height / 1 / 2h δ =
respectively. Steady solutions are obtained for all cases and there is not any vortex shedding is observed. The mean
flow is distorted immediately after the roughness and a main steady perturbation begins to form and evolutes
downstream. The amplitude of main steady perturbation is significant compared with the boundary layer initially but
begin to diminish as it goes downwards. At 0.240x m= the magnitude of this modification to base blow is reduced
by half but the sine wave like main shape is preserved. It is suggested that so far no transient growth is observed,
which is consistent with Tumin’s conclusion for two-dimensional roughness. Along the downstream direction, the
main roughness perturbation is moving upward constantly with some small secondary stability waves developed
inside of it. It is suggested that the steady disturbance is generated from mechanism that distorting the mean flow by
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the shock wave which induced by hypersonic flow over curvilinear roughness surface. Thus the energy of the shock
wave would be dissipated by the viscous effect slowly and the base flow modification will eventually disappear.

Fig. 14 shows the evolutions of streamwise velocity and pressure perturbation in the downstream at different
locations. Compared with mean flow, there is minor difference in the streamwise velocity but a clearly velocity
deficient which induced by roughness can be observed. From the upstream to the downstream of the roughness the
boundary layer become thicker than the mean flow case thus it turns out that the receptivity process in the boundary
layer with roughness effect can be different. An overall schematic of pressure modification evolution could be found
in Fig. 14b. Initially the boundary inhomogenisities develops a sine curve like perturbation, and as it go downstream,
the perturbation moves upwards as well as stretching in wall-normal direction. Eventually at 0.240x m= many tiny
instability waves excited by flow impinge roughness initially are amplified and disturb the main perturbation in
terms of wave interactions. During the wave developing process, the amplitude of main perturbation wave is
keeping decreasing which is partially caused by the lift up theory and viscous dissipations. Fig. 15 exhibits the
pressure and Mach number profile along the streamwise direction at fixed 0.010y m= . From

0.200x m= to 0.240x m= the pressure and Mach number of mean flow is remaining to be nearly unchanged.
Compared with the mean flow, pressure with roughness effect is amplified firstly by the shock wave and then
diminished through the expansion wave generated from interaction of hypersonic flow and curvilinear roughness
surface.

Current computations suggest that with the roughness effect the flat-plate boundary layer can become thicker in
the downstream compared mean flow case thus a different Mack mode instability mechanism can be introduced. But
the perturbations from roughness effect with / 1 / 2h δ = are keeping decaying in present simulation, which say that
the disturbance is not strong enough to lead to bypass transition and transition to turbulence directly.

C. Unsteady Flow with Roughness

A blow-suction slot is imposed as periodic-in-time boundary conditions for the perturbation of the mass flux on
the wall. The blow-suction is located at 0.030x m= and spread over several girds spaces. The perturbation is
controlled by the function:

15
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The variable is the non-dimensional parameter associated with current coordinate of this blow-suction,
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l x

x x

−
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A fifth order shocking fitting method combined with high order upwind finite difference scheme is used for
computing the unsteady Mach number 5.92 flow over flat plate with blow-suction located near the leading edge

without surface roughness. At the beginning of simulation, a basic frequency 501 kHzf = is specified and the other

14 different frequencies are integer times the basic frequency as 2, 3, 4.... 100,150, 200...n or f kHz= = . This case

is similar to the cases studied by Wang et al. [44]. More details can be found in that paper.
Fig. 16 shows the pressure disturbance for the overall unsteady flow from zone 3 to zone 10. Fig. 17 shows the

contours for pressure and horizontal velocity disturbance in zone 8. The amplitude of disturbance is very strong
initially due to the periodic injection of mass flux and then it starts to decay fast outside the boundary layer. This
damping behavior of large perturbations is very similar to the roughness effect which is considered to be caused by
viscous dissipations. Due to the external unsteady disturbance, there are some instability waves possess typical T-S
wave like characteristic excited inside the boundary layer via receptivity process. The T-S waves, after experiencing
transitional first mode instability in the upstream, begin to grow fast in zone 8 which is shown in Fig. 17. It turns
out a second mode instability is excited for the T-S waves inside the downstream of flat-plate boundary layer.
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Fig. 18 shows the contours for pressure and horizontal velocity disturbance in zone 8 for flow over flat plate with
surface roughness. There is no second mode instability behavior for T-S waves inside the boundary layer observed.
The magnitude of T-S wave diminished at the beginning of zone 8 and finally damped out. Fig. 19 show the
maximum magnitude of horizontal velocity disturbance along the streamwise direction with respect to different
frequency, e.g. 2, 3, 4,5n = . A Fast Fourier Transformation (FFT) technique is employed to separate all the
disturbances with different frequency. For the simulation of case without roughness, two behaviors of evolution of
T-S waves are observed. The first one is that the amplitude of T-S waves of some frequencies oscillates in the x
direction but its variation remains within a small range, which suggests a first mode like evolution. The other kind of
behavior is that the amplitude keeps amplifying and increasing monotonely. As shown in Fig. 19b, the growth rate
of streamwise velocity disturbance reach the maximum at frequency 150f kHz= . It implies that a second Mack

instability mode is excited at this specified location of flat plate and freestream disturbance frequency, which is
consistent with our theoretical intuitions. But as Fig. 19 shown, very different from traditional normal modal linear
instability analysis and case without roughness, for case with surface roughness the amplitude of T-S waves with
various frequencies begin to decay exponentially from the inlet of zone 8 and finally are damped out fast. Around
the surface roughness Fig. 19a exhibits a different amplitude evolution behavior at frequency 100f kHz= from the

other three. Rather than decaying, the wave amplitude is amplified moderately around the roughness thus we might
deduce that surface roughness plays a destabilizing effect in boundary-layer linear stability theory.

Considering the differences between the case with and without roughness, it should be pointed out that the
results at this stage are still preliminary. Further studies are needed to explain the significant decay of the
instability wave due to roughness in this case.

V. Conclusions and Future Plans

A test case of Mach number 5.92 flow over flat plate with surface roughness has been conducted by using the
high-order cut-cell method. The receptivity process induced by the interaction of blow-suction and flat plate with
roughness is also numerically investigated.

Due to the existence of surface roughness, the hypersonic flow is compressed and a weak oblique shock is
formed in front the roughness and then an expansion waves is followed. There is a significant change of flow
profiles inside the boundary layer in the downstream of surface roughness. But the modification to basic flow keeps
decaying outside the boundary layer. The receptivity to surface roughness induced by blow-suction roughness is
also investigated but the computational results are still very preliminary. Further extensive numerical experiments
for current configurations are needed to obtain more substantial results.
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Figure 1. Body-fitted grids for flow over a blunt core with finite surface roughness.

Figure 2. Definition of girds for high-order cut cell method. Four kinds of girds are defined. The intersections of
roughness and curvilinear girds form the boundary points and marked with yellow dot. When the grids are too close
to a boundary point in one direction, they are defined as dropped points and marked with red dots. The irregular
points are involving in non-uniform finite difference stencil and marked with green dots. The rest points are regular
points and marked with blue dots.
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Figure 3. Schematic of computational methodology for boundary points. Blue dots represent one side thN order

finite difference stencil for boundary points. Green dots represent N th order interpolation stencil for blue dots.

Figure 4. thN order non-uniform finite difference stencil for irregular points.
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Figure 5. Along a wall-normal grid line which is originated from a point located at 0.001x m= on the plate surface.
(a), temperature (b),velocity in y direction profile.

Figure 6. Contours for steady Mach 5.92 flow over a flat plate zone 8 without the roughness (a), pressures
(b),velocity.

Figure 7. Along a wall-normal grid line which is originated from a point located at 0.1676x m= on the plate
surface. (a), temperature (b),velocity in y direction profile.
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Figure 8. (a),General roughness geometry (b), Cartesian grids generation.

Figure 9. Contours for steady Mach 5.92 flow over a flat-plate zone 8 with surface roughness / 1 / 2h δ = (a),
pressures (b),Mach number.

Figure 10. Contours for steady Mach 5.92 flow over a flat-plate at zone 8-zone 10 with surface roughness
/ 1 / 2h δ = (a),Mach number (b),pressure.
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Figure 11. Along a wall-normal grid line at 0.188x m= on the plate surface (a), horizontal velocity (b), density
profile for flow with and without roughness.

Figure 12. Along a wall-normal grid line at 0.200x m= on the plate surface (a)�spanwise velocity (b), density
profile for flow with and without roughness.

Figure 13. Along a wall-normal grid line at 0.240x m= on the plate surface (a), horizontal velocity (b), density
profile for flow with and without roughness.
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Figure 14. The evolution of disturbance profile at different locations (a), streamwise velocity (b), pressure.

Figure 15. Along a vertical grid line at fixed 0.010y m= the profile of (a) pressure (b), Mach number for flow with

and without roughness.
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Figure 16. Pressure disturbance contour for unsteady flow field with external disturbance from zone 3 to zone 10.

Figure 17. Contours for unsteady Mach 5.92 flow over a flat plate zone 8 without the roughness (a), pressures
(b),horizontal velocity.

Figure 18. Contours for unsteady Mach 5.92 flow over a flat plate zone 8 with surface roughness (a), pressures
(b),horizontal velocity.
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(a) (b)

(c ) (d)

Figure 19. Maximum magnitude of streamwise velocity disturbance with different frequency after FFT for Mach
5.92 flow over flat-plate at zone 8 (a),n=2 (b), n=3 (c), n=4 (d), n=5.


